当前位置: 凯发k8注册登录-天生赢家凯发k8国际 > > 行业动态
新闻中心
污水处理公司中电芬顿法
1、
概述
目前污水处理公司中应用于处理环境废水的方法是传统的处理方法,包括物理处理方法和化学处理方法。然而这些方法对于有毒性的、难降解污染物的处理效果是不明显的,像是丝制品、喷涂过程、印染业和食品工艺中大量使用的合成染料。而且在使用过程中,这些有毒的染料,在氧化、羟基化或是其他化学反应作用下,还会形成一些副产物,也对生态和人类的健康造成了威胁。
随着高级氧化技术(aops)的不断发展,其在难降解污染物的处理上发挥了重要的作用。它是利用活性极强的自由基氧化分解水中的有机污染物,像·oh
具有很高的氧化能力,降解氧化水中的污染物,使其转化为co2 和h2o。fenton 法就是高级氧化技术的一种,它是利用fe2 和h2o2
反应,生成强氧化性的·oh,由于·oh
具有很高的氧化电位和无选择性,因此其可以降解氧化多种有机污染物。但由于其在处理过程中需要大量的试剂量,像是h2o2,其制备、运输和储藏等花费较高。而electro-
fenton 相对降低了这部分花费,它可以通过在适合的阴极附近曝气(氧气或空气),利用电化学持续的产生h2o2。
本文通过对electro- fenton
基本原理、操作过程及影响因素的概述,旨在为从事此项研究的人员提供基础的理论知识,以便其更好的深入研究。
2 、电芬顿法处理废水
2.1 基本原理
污水处理公司中基于传统fenton
试剂的作用机理,electro- fenton 也是由h2o2和fe2 反应产生强氧化性的·oh。其中h2o2
的电化学产生是通过在阴极充氧或曝气的条件下,发生氧气的还原生成的,而fe2
也可以通过阴极的还原反应得到。
在酸性条件下,通过充氧或曝气的方法,氧气在阴极会发生2e还原反应,如式(1)所示,产生h2o2。在此过程中,氧气首先溶解在溶液中,然后在溶液中迁移到阴极表面,在那还原成h2o2[1]。而在碱性溶液中,氧气发生反应如式(2)所示,生成ho2-。agladze[2]等通过检测气体扩散电极孔中碱性介质,认为氧气还原反应总是通过途径(2)产生ho2-
和oh-。enric brillas 等在此基础上,提出在酸性介质下,ho2- 的质子化生成了h2o2。当然h2o2
的产生和稳定性也受到其他因素的影响,包括电解池的构造、阴极性质和操作条件等。
o2 2h 2e→h2o2(1)
o2 h2o 2e→ho2- oh-
(2)
在electro- fenton 中,溶液中的fe3 可通过反应(3)在阴极还原成fe2 。图1 说明了在设想的催化循环中,ef
处理的有机污染物结构图[1]。qiang[3]等指出fe2
再生将受到电极电势和面积、ph、温度和催化剂量的影响。oturan[4]等通过分别用0.2mm的fe2 和fe3 作催化剂,在pt/ 碳毡作电极,60ma
的不分离电解池条件下降级孔雀绿,结果表明二者具有相同的降解速率。这说明在三维碳制材料下,fe2 和fe3
均可作为催化剂的来源。
fe3 e→fe2 (3)
electro- fenton
有其自身的优势[1]:电化学产生h2o2,可避免其在运输、储存和操作的危险;控制降解速率实现机理研究的可能性;由于阴极持续的fe2
再生提高了有机污染物的降解速率,这也减小了污泥;在最佳条件下,可实现低花费小的全部矿化的可行性。
2.2 影响因素
electro- fenton
能产生无选择的强氧化性的·oh,污水处理公司中可降解难处理的污染物,包括农药污染物、染料溶液、药物和个人护理品(ppcps)和工业污染物,例如苯胺和酚类等。而不断优化electro-
fenton 的反应条件,可增强其处理效果。其主要的影响因素包括:ph、阴极电极材料、催化剂的状态等。
2.2.1 ph
的影响。
对于electro- fenton 反应,ph 是重要的影响因素之一。构成electro- fenton 反应的方程式如式(4)所示。在ph
为2.8 时,从fenton 反应中产生的·oh 是最大的[5],因此,在以fe2 为催化剂的electro- fenton 反应中,通常选择ph
的条件为3。diagne[6]等人以碳毡为阴极,通过曝o2 进行氧还原反应生成h2o2 与fe3 构成electro-fenton
体系降解甲基对硫磷(mp)。实验考察了溶液ph 和阴离子种类对降解效果的影响,结果表明,在ph 为3 时,electro-
fenton对污染物的矿化效果的是最好的,而阴离子的种类对其矿化也是有影响的,在高氯酸和硝酸介质中对污染物的降解效果优于硫酸和盐酸介质,这是由于在硫酸和盐酸介质中会形成铁的复合物,抑制的污染物的降解。
fe2 h2o2→fe3 ·oh oh-
(4)
dabesgvar[7]等人也研究了电解质中阴离子的种类,对降解效果的影响。其在阴极电势为- 0.5v/sce,以石墨毡为阴极,fe3
为催化剂,降解染料orange ⅱ,结果表明,降解效果按clo4-、cl-、so42- 的顺序依次降低。他们人为这是由于cl- 和so42-
可以溶液中的铁离子形成铁的络合物,而降低了有效铁离子的浓度,此外so42- 还是·oh
的淬灭剂。
2.2.2阴极材料的影响
溶液中溶解氧和空气在适当阴极材料上发生的两电子两还原反应,使得电生成h2o2
可以应用于污水处理。目前发现的可用于阴极的材料有汞电极、石墨电极、气体扩散电极和三维电极。所谓三维电极是指相对于体积具有很大的表面积的电极,像是碳毡、活性炭纤维(acf)、网状玻璃碳(rvc)、碳海绵和碳纳米管等。
由于汞电极具有毒性,因此现在很少应用。对于碳电极来说,其是无毒的,而且对于析氢反应的过电势较高,对于h2o2
的降解有低的催化活性,此外其具有较好的稳定性、导电性[1],因此被广泛研究。但是,氧气在溶液中的溶解度是很低的,因此气体扩散电极和三维电极逐渐发展起来。
气体扩散电极(gde)具有细小的多孔结构,这些结构有利于溶液中的溶解氧渗滤到电极内部。这些电极拥有大量的表面活性电位,有利于o2
快速还原和h2o2 的累积。刘栓等[8]以石墨烯与聚四氟乙烯混合压片制成的石墨烯电极为阴极,在ph 为3 时降解罗丹明b(rhb)和2,4-
二氯苯酚。结果表明,石墨烯气体扩散电极电极相对于石墨扩散电极具有更好的降解效果。marco
panizza[9]等人应用购买的气体扩散电极降解茜素红溶液,考察了fe2 、应用电流、溶液ph
和温度对其降解的影响,并分析了降解的机理。
相对于二维电极,三维电极可以缩短反应时间和提高反应速率。三维电极的制备一般是采用流动床、固定床或是多孔材料实现的,其中多孔材料被广泛的应用于废水的处理。li
[10] 等人将fe@fe2o3 负载于acf 上制备成阴极降解罗丹明b(rhb),考察了降解效果随ph
和阴极电势的影响。
2.2.3催化剂的影响
根据催化剂的状态不同可electro- fenton 法分为均相electro-fenton
和异相electro- fenton。均相electro- fenton
是指反应的催化剂与溶液是均一的,即所用的催化剂是液态的,而异相electro-fenton
是指反应的催化剂与溶液不是均一,即所用的催化剂为固体。
均相electro- fenton 的研究发展较早,研究较多,体系较成熟。但均相electro-
fenton 存在一定的缺陷,包括反应条件苛刻(ph=3),随着反应的进行会形成铁催化剂会发污水处理公司中生络合而失活,影响反应的效果。因此异相electro-
fenton 发展起来,其克服了均相electro-
fenton反应条件苛刻,催化剂络合失活和稳定性差的缺点,因此被广泛研究和应用。xu[11]等人研究了用零价铁纳米颗粒作为催化剂降解4-氯- 3-
甲基苯酚(cmp),在降解过程中考察了ph、cmp 初始浓度、零价铁用量和h2o2 浓度对其降解效果的影响情况,结果表明,在0.5g零价铁催化剂和3.0mm
h2o2 条件下,降解的最优条件为ph为6.1,cmp 初始浓度为0.7mm。这表明在偏中性的条件下,异相催化剂仍有很高的催化降解效果,说明异相electro-
fenton 可应用较宽的ph 范围内。
除了fe2 /fe3 外,其他金属也可电催化产生·oh。zhang[12]等人应用蒽醌磺酸盐/
聚吡咯制备的阴极和cuo/al2o3 构建异相electro-fenton 降解偶氮染料。结果表明该体系最优条件为溶液ph 为4.3,阴极电势为-
0.4v,氧气量为0.4ml/min,cuo 负载量为5.78wt%,反应温度为70℃,cuo
煅烧温度为450℃时,降解效果最好。该文章为其他金属催化剂催化污染物的降解提供了依据。此外,二元或多元金属催化剂也被广泛关注。xia[13]等人采用共沉淀法制备了fe-
cu 二元金属氧化物负载的al-mcm- 41 催化剂,用于苯酚的矿化研究。该研究确定了反应的最佳条件,并指出cu 在降解过程中起到维持在高ph
范围内催化剂活性的作用,而al 为活性金属中心提供了电子,增加了电子密度,使催化剂表面处于h
区域适于·oh的生成。污水
2.2.4其他因素的影响
除了上述因素外,影响electro- fenton 处理污水效果的因素还包括,o2
的曝气量、搅动的速率、反应温度、电解质的组成、应用电势和电流和污染物的初始浓度等。
3、 展望
在处理难降解的废水中,electro- fenton
法起到了很重要的作用。这是由于它能产生高效的,无选择性的强氧化剂·oh。随着对其的不断深入研究,electro- fenton
法也在不断的发展,从对环境污染的hg 阴极到环境友好且高效的gde
和三维电极,从不分隔电解池到分隔电解池,从回收困难的均相催化剂到易回收的异相催化剂等等。
在未来electro- fenton
仍有需要不断完善污水处理公司中的技术方向:①异相electro- fenton 的不断发展。相对于均相electro-
fenton,异相electro-fenton 在保持处理效率相同或是更高的情况下,克服了均相的缺点,在今后的研究中应继续提升异相electro- fenton
在实际中的应用。②其他金属催化剂的使用。其他金属的加入,可优化electro-fenton
的反应条件,进一步提高反应效率。且在二元或是多元金属氧化物的合成中,各个金属间会产生协同作用,应继续研究它们之间的作用机理。③与其他技术的联合应用。目前有很多技术与electro-
fenton 相结合,像是光电fenton、超声电fenton、电化学过氧化技术、生物电化学过氧化技术等等。